Readme for CDSD-HITEMP

CDSD-HITEMP is a version of the Carbon Dioxide Spectroscopic Databank (CDSD) adapted for the 296-2000 K temperature interval. CDSD-HITEMP is also included into new version of the HITEMP database [1].

CDSD-HITEMP was developed in V.E. Zuev Institute of Atmospheric Optics Siberian Branch, Russian Academy of Sciences. All queries and comments about the CDSD-HITEMP databank should be addressed to:
S.A. Tashkun (tashkun@rambler.ru),
V.I. Perevalov (vip@lts.iao.ru),

Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, 1, Zuev Square, 634021, Tomsk Russia

CDSD-HITEMP contains calculated parameters of spectral lines of 7 most abundant in the Earth's atmosphere isotopologues of the carbon dioxide molecule: ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2},{ }^{13} \mathrm{C}^{16} \mathrm{O}_{2},{ }^{16} \mathrm{O}^{12} \mathrm{C}^{18} \mathrm{O}$, ${ }^{16} \mathrm{O}^{12} \mathrm{C}^{17} \mathrm{O},{ }^{16} \mathrm{O}^{13} \mathrm{C}^{18} \mathrm{O},{ }^{16} \mathrm{O}^{13} \mathrm{C}^{17} \mathrm{O}$, and ${ }^{12} \mathrm{C}^{18} \mathrm{O}_{2}$. The databank covers the $6-12784 \mathrm{~cm}^{-1}$ spectral range and contains more than 11 million entries.

Reference temperature of the databank is $T_{\text {ref }}=296 \mathrm{~K}$.
CDSD-HITEMP can be used for temperatures from 296 K to 2000 K
CDSD-HITEMP is the result of merging 3 previous versions of CDSD, namely

1. an enlarged version of CDSD-1000 [2] which has reference temperature $\mathrm{T}_{\text {ref }}=1000 \mathrm{~K}$ and intensity cutoff $\mathrm{I}_{\mathrm{cut}}=10^{-27} \mathrm{~cm}^{-1} /\left(\right.$ molecule $\left.\mathrm{cm}^{-2}\right)$
2. a version of CDSD called CDSD-Venus adapted for Venus conditions with $\mathrm{T}_{\text {ref }}=750 \mathrm{~K}$ and $\mathrm{I}_{\mathrm{cut}}=10^{-30} \mathrm{~cm}^{-1} /\left(\right.$ molecule $\left.\mathrm{cm}^{-2}\right)$
3. an atmospheric version of CDSD which is partly included into present version of the HITRAN database [3] with $\mathrm{T}_{\mathrm{ref}}=296 \mathrm{~K}$ and $\mathrm{I}_{\mathrm{cut}}=10^{-30} \mathrm{~cm}^{-1} /\left(\right.$ molecule $\left.\mathrm{cm}^{-2}\right)$.

Format of the databank is similar to the HITRAN-2008 database [3].

Structure of CDSD-HITEMP

Line positions

All line positions are calculated values based on global fits of measured positions using the effective Hamiltonian approach [4,5].

Line intensities
All line intensities are calculated values based on global fits of measured positions using the effective operator approach [4,6]. Isotopic abundances are the same as in the HITRAN database.

Pressure broadening parameters

Air-broadened halfwidths $\gamma_{\text {air }}$, self-broadened halfwidths $\gamma_{\text {self }}$, coefficients of temperature dependence of air-broadened halfwidths $\mathrm{n}_{\mathrm{air}}$ and coefficients of temperature dependence of selfbroadened halfwidths $\mathrm{n}_{\text {self }}$ are calculated values based on a semi-empirical approach [2,7].

Air-broadened pressure shifts
Air-broadened pressure shifts $\delta_{\text {air }}$ were calculated using a FORTRAN function Shift_CO2_air [8].

The CDSD databank format is mostly compatible with the current HITRAN format [3]. However, there are a number of extra numerical fields which contain additional information specific to CDSD. These fields are given in blue.

Each databank entry has the following fields:

field number	parameter	field length	Fortran descriptor	meaning	type	units and comments
1	Mol	2	I2	Molecule molecule	integer	2 for CO_{2}
2	I_{a}	1	I1	Isotopologue number	integer	1-626, 2-636, etc.
3	v	12	F12.6	vacuum wavenumber	real	cm^{-1}
4	S	10	E10.3	intensity	real	$\begin{gathered} \mathrm{cm}^{-1} /\left(\text { molecule } \mathrm{cm}^{-2}\right) \\ \text { at } 296 \mathrm{~K} \end{gathered}$
5	A	10	E10.3	Einstein A-coefficient	real	s^{-1}
6	$\gamma_{\text {air }}$	5	F5.4	air-broadened half-width	real	$\mathrm{cm}^{-1} \mathrm{~atm}^{-1}$ at 296 K
7	$\gamma_{\text {self }}$	5	F5.4	self-broadened half-width	real	$\mathrm{cm}^{-1} \mathrm{~atm}^{-1}$ at 296 K
8	E"	10	F10.4	lower-state energy	real	cm^{-1}
9	$\mathrm{n}_{\text {air }}$	4	F4.2	temperature-dependence exponent for $\gamma_{\text {air }}$	real	
10	$\delta_{\text {air }}$	8	F8.6	air pressure-induced line shift	real	$\mathrm{cm}^{-1} \mathrm{~atm}^{-1}$ at 296 K
11	$\mathrm{n}_{\text {self }}$	4	F4.2	temperature-dependence exponent for $\gamma_{\text {self }}$	real	
12	$\mathrm{v}_{1}{ }^{\prime}$	3	I3	upper state vibrational numbers $\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{l}_{2} \mathrm{v}_{3} \mathrm{r}$	integer	Spectroscopic assignment adopted for HITRAN
13	$\mathrm{v}_{2}{ }^{\prime}$	2	I2		integer	
14	$1_{2}{ }^{\prime}$	2	I2		integer	
15	$\mathrm{V}_{3}{ }^{\prime}$	2	I2		integer	
16	r^{\prime}	1	I1		integer	
17	$\mathrm{V}_{1}{ }^{\prime \prime}$	8	5x,13	lower state vibrational numbers $\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{l}_{2} \mathrm{v}_{3} \mathrm{r}$	integer	
18	$\mathrm{v}_{2}{ }^{\prime \prime}$	2	I2		integer	
19	$1_{2}{ }^{\prime \prime}$	2	I2		integer	
20	$\mathrm{V}_{3}{ }^{\prime \prime}$	2	I2		integer	
21	r"	1	I1		integer	
22	p'	3	I3	upper state polyad, Wang symmetry and ranking number	integer	Generalizedassignment discussedin detail in $[2]$.$\mathrm{p}=2 \mathrm{v}_{1}+\mathrm{v}_{2}+3 \mathrm{v}_{3}$$\mathrm{c}=1$ or 2$\mathrm{n}=1,2, \ldots$
23	c^{\prime}	2	I2		integer	
24	n'	4	I4		integer	
25	p"	3	I3	lower state polyad, Wang symmetry and ranking number	integer	
26	c"	2	I2		integer	
27	n"	4	I4		integer	
28	branch	3	2x,a1	P, Q, R	char	
29	j"	3	I3	lower state j	integer	
30	w"	1	a1	lower state Wang symmetry	char	'e' or 'f'
31	t_CDSD	5	I5	line source	integer	$\begin{gathered} 296 \text { - CDSD-296 } \\ 750 \text { - CDSD-Venus } \\ 1000 \text { - CDSD-1000 } \end{gathered}$

Uncertainty and reference indices as well as upper- and lower-state statistical weights are not used.

Isotopic composition of CDSD-HITEMP

isotopologue	entries	$v_{\min }$	$v_{\max }$	$s_{\min }$	$s_{\max }$
${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$	5881459	145.8	12784.1	$3.47 \mathrm{E}-51$	$3.52 \mathrm{E}-18$
${ }^{13} \mathrm{C}^{16} \mathrm{O}_{2}$	1732514	260.7	12462.0	$9.28 \mathrm{E}-48$	$3.74 \mathrm{E}-20$
${ }^{16} \mathrm{O}^{12} \mathrm{C}^{18} \mathrm{O}$	2283608	5.9	11422.6	$1.55 \mathrm{E}-46$	$6.87 \mathrm{E}-21$
${ }^{16} \mathrm{O}^{12} \mathrm{C}^{17} \mathrm{O}$	604898	10.6	8270.1	$2.65 \mathrm{E}-45$	$1.26 \mathrm{E}-21$
${ }^{16} \mathrm{O}^{13} \mathrm{C}^{18} \mathrm{O}$	522204	354.3	6744.2	$2.04 \mathrm{E}-43$	$7.81 \mathrm{E}-23$
${ }^{16} \mathrm{O}^{13} \mathrm{C}^{17} \mathrm{O}$	36179	546.6	6768.6	$1.29 \mathrm{E}-41$	$1.40 \mathrm{E}-23$
${ }^{12} \mathrm{C}^{18} \mathrm{O}_{2}$	132746	392.6	8162.9	$3.27 \mathrm{E}-42$	$1.33 \mathrm{E}-23$

Distribution of CDSD-HITEMP

CDSD-HITEMP is distributed as a set of 20 zipped ascii files sorted by the wavenumber v

file	$v_{\text {min }}\left(\mathrm{cm}^{-1}\right)$	$v_{\text {max }}\left(\mathrm{cm}^{-1}\right)$
cdsd_hitemp_0_500	0	500
cdsd_hitemp_500_625	500	625
cdsddhitemp_625_750	625	750
cdsd_hitemp_750_1000	750	1000
cdsd_hitemp_1000_1500	1000	1500
cdsd_hitemp_1500_2000	1500	2000
cdsd_hitemp_2000_2125	2000	2125
cdsddhitemp_2125_250	2252	2250
cdsd_hitemp_2250_2500	2250	2500
cdsd_hitemp_2500_3000	2500	3000
cdsd_hitemp_3000_3250	3000	3250
cdsd_hitemp_3250_3500	3250	3500
cdsd_hitemp_3500_350	3500	3750
cdsd_hitemp_3550_4000	3750	4000
cdsd_hitemp_4000_4500	4000	4500
cdsd_hitemp_4500_5000	4500	5000
cdsd_hitemp_5000_5500	5000	5500
cdsd_hitemp_5500_600	5500	6000
cdsd_hitemp_6000_6500	6000	6500
cdsd_hitemp_6500_13000	6500	13000

Graphical presentation of CDSD-HITEMP for 3 different temperatures

CDSD-HITEMP versus HITRAN-2008, HOT-CO $\mathbf{C O}_{2}$ and HITEMP databanks

In order to compare CDSD-HITEMP with other databanks we simulated medium resolution absorption spectra of pure CO_{2} with different temperatures and intensity cutoffs under the following conditions:

Frequency range $\left(\mathrm{cm}^{-1}\right)$	$500-13000$
Pressure $($ atm $)$	1
Pathlength (cm)	1
Type of apparatus function	rectangle
Width of apparatus function $\left(\mathrm{cm}^{-1}\right)$	1
Contour type	Lorentz
Wing length $\left(\mathrm{cm}^{-1}\right)$	2
Number of frequency steps	3000

CDSD-HITEMP versus HITRAN-2008 [3]

CDSD-HITEMP versus HOT-CO2
HOT-CO2 is a calculated database created by Wattson to study Venus' atmosphere. Reference temperature of the database is 750 K and intensity cutoff is $10^{-30} \mathrm{~cm}^{-1} /\left(\mathrm{cm}^{-2}\right.$ molecule)) at 750 K [9]. The database covers the $500-12500 \mathrm{~cm}^{-1}$ spectral range and includes data for ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$, ${ }^{13} \mathrm{C}^{16} \mathrm{O}_{2},{ }^{16} \mathrm{O}^{12} \mathrm{C}^{18} \mathrm{O}$, and ${ }^{16} \mathrm{O}^{13} \mathrm{C}^{18} \mathrm{O}$ isotopologues.

CDSD-HITEMP versus HITEMP-1995
HITEMP-1995 is a previous version of the HITEMP database [10]. Reference temperature of the database is 296 K and intensity cutoff is $\sim 10^{-27} \mathrm{~cm}^{-1} /\left(\mathrm{cm}^{-2}\right.$ molecule)) at $\mathrm{T}=1000 \mathrm{~K}$. The database consists of 1032269 entries of 8 isotopologues and covers the $500-9648 \mathrm{~cm}^{-1}$ spectral range.

Validation of CDSD-HITEMP using medium and low resolution hightemperature spectra

i) $\quad 15 \mu \mathrm{~m}$ region

Medium resolution CO2 high-temperature spectra for $\mathrm{T}=1000$ and 1550. For each region we give a plot of digitized observed transmittance taken from [11] and simulated transmittances using CDSD-HITEMP and HITEMP [10] data. Transmittances were calculated by a line-by-line code.

Low-resolution emission spectra from [12].

ii) $4.3 \mu \mathrm{~m}$ region

Medium resolution CO2 high-temperature spectra for $\mathrm{T}=1000$ and 1550 K . For each region we give a plot of digitized observed transmittance taken from [11] and simulated transmittances using CDSD-HITEMP and HITEMP [10] data. Transmittances were calculated by a line-by-line code.

Temperature 1000 K
Pressure 1 atm
Pathlength 50 cm
CO_{2} concentration 100%
ILS function form: triangle
ILS full width at half maximum: $4 \mathrm{~cm}^{-1}$
Lorentz contour
Wing length: $2 \mathrm{~cm}^{-1}$

Temperature 1550 K

Pressure 1 atm
Pathlength 50 cm
CO_{2} concentration 1%
ILS function form: triangle
ILS full width at half maximum: $4 \mathrm{~cm}^{-1}$
Lorentz contour
Wing length: $2 \mathrm{~cm}^{-1}$

Temperature 1550 K
Pressure 1 atm
Pathlength 50 cm
CO_{2} concentration 100%
ILS function form: triangle
ILS full width at half maximum: $4 \mathrm{~cm}^{-1}$
Lorentz contour Wing length: $2 \mathrm{~cm}^{-1}$

iii) $\quad 2.7 \mu m$ region

Medium resolution CO2 high-temperature spectra for $\mathrm{T}=1000$ and 1550 K . For each region we give a plot of digitized observed transmittance taken from [11] and simulated transmittances using CDSD-HITEMP and HITEMP [10] data. Transmittances were calculated by a line-by-line code.

Temperature 1000 K
Pressure 1 atm
Pathlength 50 cm
CO_{2} concentration 100%
ILS function form: triangle
ILS full width at half maximum: $4 \mathrm{~cm}^{-1}$
Lorentz contour
Wing length: $2 \mathrm{~cm}^{-1}$

Temperature 1550 K
Pressure 1 atm
Pathlength 50 cm
CO_{2} concentration 100%
ILS function form: triangle
ILS full width at half maximum: $4 \mathrm{~cm}^{-1}$
Lorentz contour
Wing length: $2 \mathrm{~cm}^{-1}$

Medium resolution spectrum from [13].
Temperature 1500 K
Pressure 1 atm
Pathlength 7.75 cm
CO_{2} concentration 100%
ILS function form: triangle
ILS full width at half maximum: $3 \mathrm{~cm}^{-1}$
Lorentz contour
Wing length: $2 \mathrm{~cm}^{-1}$

iv) $\quad 2.0 \mu m$ region

Medium resolution CO2 high-temperature spectra for $\mathrm{T}=1000$ and 1550 K . For each region we give a plot of digitized observed transmittance taken from [11] and simulated transmittances using CDSD-HITEMP and HITEMP [10] data. Transmittances were calculated by a line-by-line code.

Temperature 1000 K	Temperature 1550 K
Pressure 1 atm	Pressure 1 atm
Pathlength 50 cm	Pathlength 50 cm
CO_{2} concentration 100%	CO_{2} concentration 100%
ILS function form: triangle	ILS function form: triangle
ILS full width at half maximum: $4 \mathrm{~cm}^{-1}$	ILS full width at half maximum: $4 \mathrm{~cm}^{-1}$
Lorentz contour	Lorentz contour
Wing length: $2 \mathrm{~cm}^{-1}$	Wing length: $2 \mathrm{~cm}^{-1}$

References

1. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson HITEMP, the High-Temperature Molecular Spectroscopic Database, JQSRT 111, (2010) 2139-2150
2. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov and N.N. Lavrentieva CDSD1000, the high-temperature carbon dioxide spectroscopic databank JQSRT 82, (2003) 165-196
3. L.S. Rothman, I.E. Gordon, A. Barbe, D.Chris Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S. Mikhailenko, N. MoazzenAhmadi, O. Naumenko, A. Nikitin, J. Orphal, A. Predoi-Cross, V. Perevalov, A. Perrin, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, S. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera The HITRAN 2008 Molecular Spectroscopic Database, JQSRT, 110 (2009) 533-572
4. J.-L. Teffo, O.N.Sulakshina, V.I. Perevalov Effective Hamiltonian for Rovibrational Energies and Line Intensities of Carbon Dioxide, JMS, 156 (1992) 48-64
5. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, L.S. Rothman, Vl.G. Tyuterev Global fitting of ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$ vibrational-rotational line positions using the effective Hamiltonian approach JQSRT, 60 (1998) 785-801
6. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, VI.G. Tyuterev Global fit of ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$ vibrational-rotational line intensities using the effective operator approach JQSRT, 62, (1999) 571-598
7. A.D. Bykov, N.N. Lavrentieva, L.N. Sinitsa Calculation of CO_{2} broadening and shift coefficients for high-temperature databases, Atmos. Oceanic Opt. 13 (2000) 1015-1019
8. J.-M. Hartmann A simple empirical model for the collisional spectral shift of airbroadened CO_{2} lines, JQSRT 110, (2009) 2019-2026
9. J.B. Pollack, J.B. Dalton, D. Grinspoon, R.B. Wattson, R. Freedman, D. Crisp, D.A. Allen, B. Bezard, C. DeBergh, L.P. Giver, Q. Ma, R. Tipping Near-infrared light from Venus' nightside: a spectroscopic analysis, Icarus, 103, (1993) 1-42
10. L.S. Rothman, R.B. Wattson, R.R. Gamache, J. Schroeder, A. McCann HITRAN, HAWKS and HITEMP High-Temperature Molecular Database. Proc Soc Photo-Optical Instrumentation Engineers 2471 (1995) 105-111
11. S.P. Bharadwaj, M.F. Modest Medium resolution transmission measurements of CO_{2} at high temperature - an update. JQSRT 103 (2007) 146-55
12. C.B. Ludwig, C.C. Ferriso, L. Acton High-Temperature Spectral Emissivities and Total Intensities of the $15-\mu$ Band System of CO_{2} JOSA 56 (1966) 1685-1692
13. D. Scutary, L. Rosenmann, J. Taine Approximate intensities of CO_{2} hot bands at 2.7, 4.3, and $12 \mu \mathrm{~m}$ for high temperature and medium resolution applications JQSRT 52, (1994) 765-781
